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ABSTRACT
Calcium (Ca2þ) is an important regulator of apoptotic signaling. Calbindin-D9k (CaBP-9k) and -D28k (CaBP-28k) have a high affinity for Ca2þ

ions. Uterine calbindins appear to be involved in the regulation of myometrial activity by intracellular Ca2þ. In addition, uterine calbindins are
expressed in the mouse endometrium and are regulated by steroid hormones during implantation and development. The aim of the present

study was to evaluate the regulation of apoptosis in the uteri of CaBP-9k, CaBP-28k, and CaBP-9k/28k knockout (KO) mice. Our findings

indicated that Bax protein was enhanced in the uteri of CaBP-28k and CaBP-9k/28k KO mice compared to wild-type (WT) and CaBP-9k KO

mice, but no difference was observed in Bcl-2 protein expression. The expressions of caspase 3, 6, and 7 proteins were higher in both CaBP-28k

and CaBP-9k/28k KO mice than in WT and CaBP-9k KO mice. These results suggest that the absence of CaBP-28k increases apoptotic

signaling. We also investigated the expression of endoplasmic reticulum (ER) stress genes by Western blot analysis in calbindin KO mice.

C/EBP homologous protein and immunoglobulin heavy chain-binding protein protein levels were elevated in CaBP-28k KOmice compared to

WTmice. When immature mice were treated with 17b-estradiol (E2) or progesterone (P4) for 3 days, we found that the expressions of Bax and

caspase 3 protein were increased by E2 treatment in WT and CaBP-9k KO mice, and by P4 treatment in CaBP-28k KO mice. These results

indicate that CaBP-28k blocks the up-regulation of apoptosis-related genes and ER stress genes, implying that CaBP-28k may decrease the

expression of genes involved in apoptosis and ER stress in murine uterine tissue. J. Cell. Biochem. 113: 194–203, 2012.
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C alcium ions regulate many cellular functions including

cell proliferation, differentiation [Richter and Kass, 1991;

Dolmetsch et al., 1997]. Calcium ions play a critical role in apoptosis,

and increased intracellular calcium has been shown to activate

apoptotic pathways [Martikainen et al., 1991; Lynch et al., 2000].

In addition, it has been shown that an elevation or reduction

in intracellular calcium ion levels can promote cell death through

necrosis or apoptosis [Choi, 1995; Nicotera and Orrenius, 1998].

Increased intracellular calcium levels trigger the release of

cytochrome c and the activation of caspase 3, leading to cell death

[Rizzuto et al., 1998; Csordas et al., 1999].

Mitochondrion-mediated apoptotic plays a central role in animal

development and tissue homeostasis is regulated by Bcl-2 family

proteins. Apoptosis is regulated by several proteins, including

members of the caspase protein family. Bcl-2 is one of a group of

anti-apoptotic proteins that can prevent or reduce cell death induced

by a variety of stimuli. Bax is a member of the Bcl-2 family and

functions as a pro-apoptotic protein in the cytosol. Bax forms

a dimer, and thus the increased expression of Bax promotes

dimerization and cell death, or Bax can heterodimerize with

Bcl-2 to neutralize the anti-apoptotic function of Bcl-2. Bax is

essential for the release of cytochrome c and caspase activation

[Eskes et al., 1998; Finucane et al., 1999; Gross et al., 1999].

Cytochrome c binds to Apaf-1 and caspase 9, resulting in the

activation of caspase 9, which in turn activates caspase 3 and

caspase 7, ultimately resulting in cell death. A recent study

demonstrated that Bax can also localize to the endoplasmic

reticulum (ER) and is activated in response to ER stress, leading

to calcium depletion and murine caspase 12 activation [Scorrano

et al., 2003; Zong et al., 2003]. ER stress can also trigger apoptosis.
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Apoptosis signals are generated through several mechanisms,

including the induction of C/EBP homologous protein (CHOP) or

immunoglobulin heavy chain-binding protein (BiP), an ER chaper-

one with sentinel activity [Hendershot, 2004; Oyadomari and Mori,

2004; Li et al., 2006].

Calcium-binding proteins (calbindins) are a group of intracellular

proteins with a high affinity for calcium and include calmodulin,

parvabumin, troponin C, calbindin-D9k (CaBP-9k), and calbindin-

D28k (CaBP-28k). CaBP-9k and CaBP-28k are expressed in a variety

of organs and tissues, including the intestine, kidney, pancreas,

brain, bone, uterus, and placenta [Nys et al., 1992; Mutema and

Rhoten, 1994; Bellido et al., 2000; Rabinovitch et al., 2001;

Kutuzova et al., 2006]. CaBP-9k and CaBP-28k are involved in

intestinal calcium absorption, and are typically regulated at the

transcriptional and post-transcriptional level by 1,25-dihydrox-

yvitamin D3, the hormonal form of vitamin D [Wasserman and

Fullmer, 1989; Darwish and DeLuca, 1992]. However, in the uterus,

CaBP-9k and CaBP-28k are not regulated by vitamin D, despite the

presence of vitamin D receptors in this tissue. Instead, uterine CaBP-

9k and CaBP-28k are regulated by sex steroid hormones in rats

[L’Horset et al., 1990, 1993]. In a previous report, P4 was shown to

enhance CaBP-9k expression in the uteri of oophorectomized adult

mice, whereas E2 had no effect [Tatsumi et al., 1999; An et al.,

2004a]. In immature mice, it was shown that E2 induced the down-

regulation of uterine CaBP-28k expression [Opperman et al., 1992].

CaBP-9k is expressed at high levels in the mouse uterus in diestrus

and metoestrus, and at basal levels in proestrus and estrus [Nie et al.,

2000; An et al., 2004a]. CaBP-28k is expressed at high levels in

human uteri in the mid-secretory phase. It has also been shown that

the levels of mouse uterine CaBP-9k and CaBP-28k are increased

during early pregnancy and implantation [Tatsumi et al., 1999; Nie

et al., 2000; Luu et al., 2004]. These data indicate that CaBP-9k and

CaBP-28k are regulated by sex hormones in uterine epithelium and

seem to be important factors for implantation in human and mouse.

Apoptosis is a genetically regulated cellular suicide mechanism

essential for the removal of damaged or unwanted cells and for the

maintenance of tissue homeostasis in multicellular organisms.

Recent studies have investigated the role of cell death during

development and have revealed that apoptosis is initiated in

response to implantation in the uterus [Spencer et al., 1996; Vinatier

et al., 1996; Gosden and Spears, 1997; Jacobson et al., 1997;

Milligan and Schwartz, 1997]. The regulation of apoptosis by sex

steroid hormones is one of the most important functions of 17b-

estradiol (E2) and progesterone (P4) in the uterus. E2 has been shown

to induce apoptosis in the uterine epithelium, while P4 inhibits this

process [Martin et al., 1970; Terada et al., 1989]. However, the

detailed mechanisms of regulation of apoptosis in the uterus remain

to be elucidated and are essential for understanding regulation of

calbindins in apoptosis-induced signaling pathways.

CaBP-28k has been shown to block multiple pro-apoptotic

pathways. Expression of CaBP-28k in neural cells inhibited the pro-

apoptotic activity of mutant presenilin-1 by preventing calcium-

mediated mitochondrial damage and cytochrome c release [Guo

et al., 1998]. Expression of CaBP-28k in HEK renal cells was shown

to inhibit parathyroid hormone-induced apoptosis by buffering

intracellular calcium [Turner et al., 2000; Rintoul et al., 2001]. In

addition, cytokine-induced apoptosis and necrosis of pancreatic

beta cells can be prevented by CaBP-28k [Rabinovitch et al., 2001].

CaBP-28k protects osteoblasts against TNF and glucocorticoid-

induced apoptosis through the inhibition of caspase 3 activity

[Bellido et al., 2000; Liu et al., 2004]. In addition, the induction of

CaBP-9k expression by melatonin was shown to reduce H2O2-

mediated cell death in rat pituitary GH3 cells [Yoo and Jeung, 2009,

2010]. In previous studies, hydrogen peroxide (H2O2)-induced

apoptosis can be prevented by CaBP-28k expression in human

endometrial Ishikawa cells [Jung et al., 2011].

Although several studies have examined the function of CaBP-9k

and CaBP-28k in apoptosis-induced signaling pathways in the

uterus, no evidence of transcriptional dysregulation has been

previously observed in the CaBP-9k, CaBP-28k, and CaBP-9k/28k

knockout (KO) mouse models. Thus, we investigated whether

apoptosis-related gene expression is altered by the absence of

calbindin genes in these KO mice to better understand the

mechanisms of calbindin activity in the uterus.

MATERIALS AND METHODS

ANIMALS

CaBP-9k and CaBP-28k single KOmice were generated as previously

described [Kutuzova et al., 2006; Lee et al., 2007]. CaBP-9/28k mice

were generated by breeding CaBP-9k single KO female mice with

CaBP-28k single KO male mice to generate double heterozygotes,

which were subsequently bred to obtain homozygous CaBP-9/28k

mice. The genotypes of offspring were determined by PCR analysis,

as described previously [Lee et al., 2007]. All experimental

procedures and animal use were approved by the Ethics Committee

of the Chungbuk National University.

EXPERIMENTAL TREATMENTS

Immature female CaBP-9k KO, CaBP-28k KO, CaBP-9/28k KO, and

wild-type (WT) (C57BL/6) mice (7 and 14 days of age) were produced

by the breeding of the corresponding heterozygous mice. All

animals were housed in polycarbonate cages and were allowed to

acclimate to housing in an environmentally controlled room

(temperature: 23� 28C, relative humidity: 50� 10%, frequent

ventilation, and a 12-h light cycle). Animals were fed soy-free

food pellets (Dyets, Inc., Bethlehem, PA). Only female mice (n¼ 20

total; n¼ 5 per group) were used in this study, and each group was

subcutaneously (sc) injection with 10% ethanol vehicle, E2 (40mg/

kg body weight [BW]), or P4 (4mg/kg BW) for 3 days. The uteri

tissues were rapidly excised from euthanized mice for protein

isolation. Other uteri were fixed in 10% neutral-buffered formalin

solution and sectioned at 5mm for TUNEL assay.

TUNEL STAINING

TUNEL staining was performed on paraffin-embedded sections

using the In Situ Cell Death Detection Kit, Fluorescein (Roche

Diagnostics, Mannheim, Germany). Uteri were embedded in paraffin

and then the slides were dewaxed and rehydrated by heating at 608C.
Slides were then washed in xylene and rehydrated through a graded

series of ethanol and double-distilled water steps. Next, the slides

were incubated for 30min at 378C in a 20mg/ml proteinase K
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working solution. The slides were rinsed with PBS, and the area

around the sample was dried. The slides were then incubated with

200ml of TUNEL reaction mixture containing terminal deoxynu-

cleotidyl transferase (TdT) for 60min in a dark, humidified

atmosphere at 378C. After slides were rinsed three times with

PBS, they were analyzed using a fluorescence microscope (BX51

Standard Microscope, Olympus, Japan). Positive control sections

were treated with the same reagents but also pre-treated with

1,000 U/ml DNase I (TaKaRa Bio Inc., Otsu, Shiga, Japan) in 50mM

Tris–HCl (pH 7.5), 10mM MgCl2, and 1mg/ml BSA for 10min at

room temperature prior to the TUNEL assay. For negative controls,

sections were incubated with TUNEL label only. The all slides

were then stained with 4,6-diamidino-2-phenylindole (DAPI,

Sigma, St Louis, CA) and viewed with a fluorescence microscope.

The numbers of TUNEL-positive cells were counted using fluores-

cence microscopy.

WESTERN BLOT ANALYSIS

Protein was extracted using Proprep (iNtRON Bio., Inc., Sungnam,

Kyungki-do, Korea) according to the supplier’s instructions. Protein

concentration was determined using the BCA assay (Sigma).

Proteins (50mg) were separated by 12.5% and 7.5% sodium dodecyl

sulfate-polyacrylamide gel electrophoresis (SDS–PAGE) and then

transferred onto a polyvinylidene difluoride (PVDF) membrane. The

membrane was incubated with antibodies against the following

proteins: bax, CaBP-28k (1:1,000) (Santa Cruz Biotech, Santa Cruz,

CA), caspase 3, caspase 6, caspase 7 (1:500), bcl-2, CHOP, BiP, CaBP-

9k (1:1,000) (Cell Signaling Technology, Beverly, MA), or

glyceraldehyde 3-phosphate dehydrogenase (GAPDH; 1:1,000,

Santa Cruz Biotech). Immunoreactive proteins were visualized by

exposure to X-ray film. Protein bands were quantified by image

scanning, and optical density was measured using a Gel Doc EQ

system (Bio-Rad Laboratories, Inc.) after data were corrected by

background subtraction and normalized using GAPDH as an

internal control.

STATISTICAL ANALYSIS

Significant differences were determined by ANOVA, followed by

Tukey‘s test in experimental groups. Statistical analysis was

performed using Prism Graph Pad (v4.0; GraphPad Software Inc.,

San Diego, CA). The data were presented as mean� standard error of

the mean (SEM) in triplicates derived from three individual

experiments. Data were considered statistically significant at

P< 0.05.

RESULTS

UTERINE APOPTOSIS

A TUNEL assay detected apoptotic cells in the endometrial and

myometrium layers of CaBP-9k KO, CaBP-28k KO, CaBP-9/28k KO,

and WT uteri. The incidence of apoptosis in the uteri of CaBP-9k KO,

CaBP-28k KO, and CaBP-9/28k KO mice was compared with that of

WT mice (Fig. 1A). Mouse uterine tissue incubated only with

labeling solution was used as a negative control and showed a

complete absence of staining. The Apoptotic signals were present

in the epithelial cells lining the lumen and myometrium as shown in

Figure 1A. CaBP-28k KO and CaBP-9/28k KO mice showed a

significant increase in the number of TUNEL-positive cells as seen in

Figure 1B. However, the number of TUNEL-positive cells in the uteri

of CaBP-9k KO mice was similar to that of WT mice at 7 days after

birth.

INDUCTION OF APOPTOTIC SIGNALING IN KO MICE

We compared the expression of apoptosis-related genes in the

uterine tissue of immature WT, CaBP-9k KO, CaBP-28k KO, and

CaBP-9/28k KO mice. To avoid the fluctuations in gene expression

that accompanies estrous cycle in mature mice, only immature mice

were utilized. Uterine proteins were isolated from immature CaBP-

9k KO, CaBP-28k KO, CaBP-9/28k KO, and WT mice 7 days after

birth. We measured the expression of the apoptotic proteins Bax and

Bcl-2 in WT, CaBP-9k KO, CaBP-28k KO, and CaBP-9/28k KO mice.

Although CaBP-9k protein was not detected in the uteri of immature

mice by Western blot analysis in our previous study [Ji et al., 2006],

in this study, CaBP-28k protein was detected in the uterine tissue of

WT and CaBP-9k KO mice. We also found that apoptosis-related

genes were differentially regulated: CaBP-28k KO and CaBP-9/28k

KO mice showed significantly higher Bax protein expression

compared to WT mice (Fig. 2). However, no difference was observed

in Bcl-2, CaBP-9k, or CaBP-28k protein expression among the

various mouse groups. In addition, significantly higher levels of

activated caspase 3, 6, and 7 proteins were detected in the uteri of

CaBP-28k KO and CaBP-9/28k KO mice (Fig. 3), while significantly

activated expression of caspase 3 protein was not observed in CaBP-

9k KO mice compared to WT mice. These results indicate that the

absence of CaBP-28k is associated with increased apoptotic

signaling.

ENDOPLASMIC RETICULUM STRESS IN KO MICE

We further compared the expression of the ER stress genes CHOP and

BiP in uterine tissue from immature WT, CaBP-9k KO, CaBP-28k KO,

and CaBP-9/28k KOmice 7 days after birth. CaBP-28k KO and CaBP-

9/28k KO mice showed significantly higher expressions of CHOP

and Bip as seen in Figure 4. However, the expressions of CHOP

and Bip protein were not altered in CaBP-9k KO mice, suggesting

that the absence of CaBP-28k may be associated with increased ER

stress.

EFFECTS OF STEROID HORMONES ON APOPTOSIS-RELATED GENES

To confirm the effects of sex steroid hormones on apoptosis-related

gene expression, immature WT mice (14 days of age) were given

daily injections of E2 (40mg/kg) or P4 (4mg/kg) for 3 days. In

addition, CaBP-9k KO mice were given injections of E2, and CaBP-

28k KO mice were given injections of P4 for 3 days. As seen in

Figure 5, E2 decreased CaBP-28k expression in WT and CaBP-9k KO

mice, and P4 increased CaBP-9k expression inWT and CaBP-28k KO

mice. In addition, E2 treatment up-regulated Bax and caspase-3

protein inWT and CaBP-9k KOmice, and P4 treatment had the same

effect in CaBP-28k KO mice. However, the expression of Bcl-2 was

not affected by E2 or P4 treatment. These results indicate that CaBP-

28k may decrease apoptosis-related gene expression in mouse

uterine tissue.
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DISCUSSION

This is the first study to investigate the consequences of a total loss

of function of CaBP-9k, CaBP-28k, and CaBP-9k/28k KO on

apoptosis-related gene expression in uterine tissue. In this study,

Bax protein expression was enhanced in the uteri of CaBP-28k and

CaBP-9k/28k KO mice compared to WT and CaBP-9k mice. In

addition, the expressions of caspase 3, 6, and 7 proteins were up-

regulated in both CaBP-28k and CaBP-9k/28k KO mice, implying

that the absence of calbindins may increase apoptosis-induced

signaling and ER stress.

During the pre-implantation period, apoptotic uterine epithelial

cell death occurs as part of the estrous cycle, and the sex steroid

hormones E2 and P4 are key regulators of the estrous cycle [Dharma

et al., 2001]. Apoptotic processes are directly responsible for the

morphological changes that occur during the estrous cycle; uterine

luminal epithelial cell weight increases from diestrus to estrus, and

apoptosis peaks during metestrus and estrus. Uterine epithelial

apoptosis appears to be regulated by steroid hormones [Sato et al.,

1997]. The expression of apoptosis-related genes has been shown to

be controlled by Bcl-2 family members, which include anti-

apoptotic proteins such as Bcl-2 and Bcl-X, and pro-apoptotic

proteins, such as Bax and Bak [Gross et al., 1999; Harris and

Thompson, 2000; Antonsson, 2001]. Both Bcl-2 and Bax have been

shown to be expressed in human endometrial tissue [McLaren et al.,

1997], and expression of these proteins is higher in the secretory

endometrium [Meresman et al., 2000]. In addition, caspases are well

established as key mediators of apoptosis; caspases are divided into

initiators (caspase 8 and 9) and effectors (caspases 3, 6, and 7)

[Thornberry, 1998; Lakhani et al., 2006]. Initiator caspases exert

regulatory roles by activating the downstream effectors of caspases

3, 6, and 7, which cleave various cellular substrates. Caspases are

believed to target important proteins that regulate cell proliferation

and survival [Cohen, 1997]. Caspase 3 is a key mediator of apoptosis

and induces downstream caspase 6, which in turn induces the

targeted cleavage of important structural proteins such as

laminin and keratins [Caulin et al., 1997; Ruchaud et al., 2002].

In addition, poly(ADP-ribose) polymerase (PARP), a nuclear enzyme

activated during DNA damage, is known to be cleaved by caspases 3

and 7 [Ohgushi et al., 1980]. Executioner caspases contribute to

chromatin condensation and margination [Slee et al., 2001].

Therefore, caspases 3, 6, and 7 are key mediators of apoptosis

and common downstream effectors of multiple apoptotic signaling

pathways.

Fig. 1. Apoptosis was evaluated in the uteri of calbindin KO mice by TUNEL assay. Apoptotic nuclei were labeled with TUNEL (green) and DAPI (blue) and imaged using a

fluorescent microscope (A). Insets contain merged images showing TUNEL-positive cells. Upper corner inserts contain merged images from boxed areas. The data represent

means expressed as the numbers of TUNEL-positive cells (B). �P< 0.05 versus WT mice; #P< 0.05 versus CaBP-9k KO mice. Scale bars indicate 100mm.
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Calcium is involved in the regulation of cell differentiation,

proliferation, and apoptosis. In response to stimuli such as

membrane depolarization, extracellular molecular signals, or

intracellular messengers, the cytoplasmic concentration of calcium

ions can increase from 10�7M in the resting cell to 10�5M in the

activated cell, the result of either an influx of extracellular calcium

or of intracellular calcium from the ER [Berridge et al., 2000, 2003;

Gifford et al., 2007]. The ER is the site of the synthesis, folding,

modification, and trafficking of secretory and cell-surface proteins.

The ER lumen contains the largest store of intracellular calcium;

thus, the ER also plays a critical role in maintaining calcium

homeostasis. When the lumen of the ER is exposed to an oxidative

environment, the disulfide bonds are formed, and the accepted

folding of proteins for secretion displays on the cell surface. Because

of its role in protein folding and transport, the ER is also rich

in Ca2þ-dependent molecular chaperones, such as Grp78/Bip,

Grp94, and calreticulin [Schroder and Kaufman, 2005; Xu et al.,

2005]. Recent studies have suggested that the ER stress response is

involved in the regulation of apoptosis. ER stress-induced apoptosis

is mediated by the transcriptional activation of the transcription

factor CCAAT/enhancer-binding protein (C/EBP)-homologous pro-

tein (CHOP). CHOP heterodimerizes with other C/EBP family

members and thus induces apoptosis [Oliveira et al., 2009; Pino

et al., 2009]. Thus, it is important to investigate the expression of the

ER stress markers, BiP and CHOP. In this study, we observed

significantly higher CHOP and BiP expression in CaBP-28k KO and

CaBP-9k/28k double KO mice, suggesting that uterine CaBP-28k

plays an important role as an inhibitor of ER stress. Thus, future

work will attempt to correlate intracellular CaBP-28k activity with

the expression of apoptosis-related genes and ER stress genes in

CaBP-28k KO and CaBP-9k/28k double KO mice.

P4 induces CaBP-9k in the luminal epithelium before implanta-

tion but decreases levels of CaBP-9k at the site of embryo

attachment during implantation in the murine uterus [Lee et al.,

2003, 2005; An et al., 2003a,b, 2004a; Nie et al., 2005]. CaBP-9k and

CaBP-28k are expressed in similar patterns during early pregnancy.

Gene deletion with antisense oligonucleotides for CaBP-9k

completely blocked the implantation process in CaBP-28k-null

Fig. 2. Expression of apoptotic genes in the uteri of calbindin KO mice. Expression of Bax, Bcl-2, and CaBP-28k in calbindin KO mice was analyzed by Western blot (A) and

results are represented as bar graphs. The Bax to Bcl-2 ratio was calculated from the expression of Bax and Bcl-2 (B). Protein expression was normalized to that of GAPDH and is

shown as a percent of WT expression. Data represent the mean� SEM of triplicate samples of three individual experiments. �P< 0.05 versus WT mice; #P< 0.05 versus CaBP-9k

KO mice.
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mice Luu et al., 2004]. In our study, birth rates were significantly

lower in CaBP-9k/28k KO mice than in CaBP-9k, CaBP-28k KO, or

WTmice (data not shown). These observations indicate that CaBP-9k

and CaBP-28k may not be essential for embryo implantation, and

that the loss of CaBP-9k or CaBP-28k function can be compensated

for by other implantation-related genes. A study using calbindin KO

mice is further required to confirm role(s) of calbindins during

implantation process. Recent studies have shown that apoptosis is

regulated during implantation in the uterus [Spencer et al., 1996;

Vinatier et al., 1996; Gosden and Spears, 1997; Jacobson et al.,

1997; Milligan and Schwartz, 1997]. E2 has been shown to induce

apoptotic signaling, while P4 inhibits it [Martin et al., 1970; Terada

Fig. 3. Expression of activated caspases in the uteri of calbindin KO mice. Expression of caspase 3, 6, and 7 was measured by Western blot in calbindin KO mice (A) and results

are represented as bar graphs (B). Protein expression was normalized to that of GAPDH and is shown as a percent of WT expression. Data represent the mean� SEM of triplicate

samples of three individual experiments. �P< 0.05 versus WT mice; #P< 0.05 versus CaBP-9k KO mice.

Fig. 4. Expression of ER stress genes in the uteri of calbindin KO mice. Expression of CHOP and BiP in calbindin KO mice was measured by Western blot analysis (A) and results

are represented as bar graphs (B). Protein expression was normalized to that of GAPDH and is shown as a percent of WT expression. Data represent the mean� SEM of triplicate

samples of three individual experiments. �P< 0.05 versus WT mice; #P< 0.05 versus CaBP-9k KO mice.
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et al., 1989], suggesting that apoptotic signaling is regulated by

E2 and P4 in the murine uterus. In addition, uterine CaBP-9k

expression is up-regulated by P4 [An et al., 2004b; Nguyen

et al., 2005] and uterine CaBP-28k expression is down-regulated

by E2 in immature mice [Opperman et al., 1992]. In this study, Bax

and caspase 3 proteins were up-regulated by E2 in both WT and

CaBP-9k KO mice, and by P4 in CaBP-28k KO mice, suggesting that

CaBP-28k may block the induction of apoptotic signals in the

murine uterus.

Recent studies have indicated that CaBP-28k blocks apoptotic

processes that are induced by diverse signaling pathways. CaBP-28k

has been demonstrated to inhibit apoptotic signaling in neural cells,

renal cells, beta cells, osteoblasts, and endometrial cells, which

suggests that CaBP-28k may inhibit apoptosis by buffering

intracellular calcium and by interacting with the active form of

caspase 3 [Guo et al., 1998; Bellido et al., 2000; Turner et al., 2000;

Rabinovitch et al., 2001; Rintoul et al., 2001; Jung et al., 2011]. As

further evidence of the ability of calcium-binding proteins to inhibit

Fig. 5. Effects of steroid hormones on apoptosis-related gene expression in the uteri of calbindin KO mice. Expression of Bax, Bcl-2, caspase 3, CaBP-9k, and CaBP-28k was

measured in calbindin KOmice byWestern blot analysis (A) and results are represented as bar graphs. The ratio of Bax to Bcl-2 was calculated from the expression of Bax and Bcl-

2 (B). Protein expression was normalized to that of GAPDH and is shown as percent expression of WT mice treated with 10% ethanol. Data represent the mean� SEM of

triplicate samples of three individual experiments. �P< 0.05 versus WT mice; #P< 0.05 versus WTþ E2; yP< 0.05 versus WTþ P4.
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apoptosis, melatonin-induced increased CaBP-9k expression in

pituitary cells was shown to inhibit H2O2-mediated cell death [Yoo

and Jeung, 2009, 2011].

This study is the first to demonstrate that CaBP-9k and CaBP-28k

regulate apoptosis signaling pathways in the uterus using KO mice.

Increased expression of apoptosis-related and ER stress-related

genes was shown in the uteri of CaBP-28k KO and CaBP-9/28k KO

mice. Our results suggest that CaBP-28k can protect against

apoptosis and ER stress through gene regulation in uterine tissue.

However, a further study warranties to elucidate the mechanism

through which the expressions of ER stress-related genes may

increase in CaBP-28k KO and CaBP-9/28k KO mice. In addition, this

study demonstrated that the downstream effectors caspase 3, 6, and

7, and the ER stress-related genes CHOP and Bip, were up-regulated

in the uterine tissue of CaBP-28k KO and CaBP-9k/28k double KO

mice. A further study is necessary to clarify the upstream apoptotic

signaling pathways and ER stress-related pathways in the uteri of

immature and mature calbindin KO mice. The results of this study

indicate that the expression of CaBP-28k down-regulates apoptotic

signaling pathways and ER-stress-related genes in the uterine tissue

of KO mice.
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